Unsteady computational fluid dynamics modeling of free-flight projectile aerodynamics
نویسنده
چکیده
This paper describes a new multidisciplinary computational study undertaken to model the flight trajectories and the free-flight aerodynamics of both a finned projectile at supersonic velocities and a spinning projectile at subsonic speeds with and without aerodynamic flow-control. Actual flight trajectories are computed using an advanced coupled computational fluid dynamics (CFD)/rigid body dynamics (RBD) technique. An advanced time-accurate Navier–Stokes computational technique has been used in CFD to compute the unsteady aerodynamics associated with the free-flight of the finned projectile at supersonic speeds and the spinning projectile at subsonic speeds. Computed positions and orientations of the projectile have been compared with actual data measured from free-flight tests and are found to be generally in good agreement. Predicted aerodynamics forces and moments compare well with the forces and moments used in the six degree freedom fits of the results of the same tests. Unsteady numerical results obtained from the coupled method show the flow field, the aerodynamic forces and moments, and the flight trajectories of the projectile.
منابع مشابه
Generating an aerodynamic model for projectile flight simulation using unsteady time accurate computational fluid dynamic results
A method to efficiently generate a complete aerodynamic description for projectile flight dynamic modeling is described. At the core of the method is an unsteady, time accurate computational fluid dynamics simulation that is tightly coupled to a rigid body dynamics simulation. A set of n short time snippets of simulated projectile motion at m different Mach numbers is computed and employed as b...
متن کاملImproved Mathematical Model for Helicopters Flight Dynamics Applications
The purpose of this paper is concerned with the mathematical model development issues, necessary for a better prediction of dynamic responses of articulated rotor helicopters. The methodology is laid out based on mathematical model development for an articulated rotor helicopters, using the theories of aeroelastisity, finite element and the time domain compressible unsteady aerodynamics. The he...
متن کاملTime-accurate Aerodynamic Modeling of Synthetic Jets for Flow Control
This paper describes a computational study undertaken to determine the aerodynamic effect of tiny unsteady synthetic jets as a means to provide the control authority needed to maneuver a spinning projectile at low subsonic speeds. Advanced Navier-Stokes computational techniques have been developed and used to obtain numerical solutions for the unsteady jet-interaction flow field at subsonic spe...
متن کاملUnsteady-state Computational Fluid Dynamics Modeling of Hydrogen Separation from H2/N2 Mixture
3D modeling of Pd/α-Al2O3 hollow fiber membrane by using computational fluid dynamic for hydrogen separation from H2/N2 mixture was considered in steady and unsteady states by using the concept of characteristic time. Characteristic time concept could help us to design and calculate surface to volume ratio and membrane thickness, and adjust the feed conditions. The contribution of resistance be...
متن کاملThe Impact of Unsteady Aerodynamics on the Loading of Flight Vehicles
Abstract. This paper describes the growing use of computational fluid dynamics (CFD) at the Lockheed Martin Aeronautics Company to assess and design for unsteady loads. The experience in development and in use of CFD for unsteady loads is presented in four sections: (1) background and motivation leading to the development of this capability, (2) an overview of the tools and processes utilized i...
متن کامل